A-dimensional gauge theory and 3 representation theory

Hiraku Nakajima (RIMS, Kyoto)

Nov. 12, 2014

The 30th Kyoto Prize Commemorative Workshop in Basic Sciences

In Nov. 1996, Witten gave a series of lectures at Newton Institute, Cambridge.

He explained 3 topics:

- 1. 3-manifolds invariants via hyper-Kaehler manifolds (Rozansky-Witten)
- 2. Coulomb branch for 3d N=4 SUSY gauge theory (Seiberg-Witten for SU(2) and others)
- 3. 3d mirror symmetry (Intriligator-Seiberg) and its description by branes (Hanany-Witten)

They were instructive lectures, and I learned quite lots.

But I could not produce my own work out of them at that time.

Today: My response to lectures, 18 years later!

3d N=4 SUSY gauge theory (topologically twisted version) data

(G×Sp(1))

- G: a compact Lie group
- –
 ∀ : a quaternionic representation of G
- $\left(- \stackrel{\triangleright}{\square} \right)$ a principal G-bundle over M^3

- $\frac{\text{fields}}{- A}: G\text{-connection} + \text{etc} \quad (\text{vector multiplet})$
 - 一 重 spinor for $(P \times P_{priv}) \times \nabla$ + etc (hypermultiplet)
- \longrightarrow a hyper-Kaehler manifold \mathcal{M}_{c} : Coulomb branch
- \mathcal{M}_{C} is important to understand the gauge theoretic 3d invariants, defined by counting solutions of PDE of fields.

e.g. Casson-Walker invariant
$$(G=SU(2), V=0)$$
 = Rosandry-Witten 3d monopole invariant $(G=U(1), V=H)$ invariant of M

Seiberg-Witten (1996)
$$G = SU(2), \forall T = 0 \implies M_C = Atiyah-Hitchin manifold$$

$$G = \mathcal{V}(1), \forall T = H \implies M_C = Taub-NUT space$$

 $\mathcal{M}_{\mathbb{C}}$ is based on quantum field theory, which lacks mathematical foundation. For mathematicians, claims sound as

(something, not defined) = AH, or TN space.

Thus mathematicians cannot understand these statements.

Later $\mathcal{M}_{\mathbb{C}}$ were computed in many examples in physics literature, interesting hyper-Kaehler manifolds, such as instanton moduli spaces of exceptional groups, appeared.

Examples.

Abelian gauge theory

$$G = U(1)^n \cap H^a$$

$$\longrightarrow 0 \to \mathbb{Z}^{N} = \pi_{l}(G) \longrightarrow \mathbb{Z}^{d} = \pi_{l}(\nabla u)^{d}) \longrightarrow \mathbb{Z}^{d-N} \longrightarrow 0$$

Apply Hom (·, U(1)):

$$1 \rightarrow U(1)^{d-1} \longrightarrow U(1)^{d} \longrightarrow G'(dual torus) \longrightarrow 1$$

Then
$$M_C = (\mathbb{H}^d)^* / / U(1)^{d-n}$$
 (hypertable quotient)

cf.
$$M_H = \mathbb{H}^d /\!\!/ G$$

2. Quiver gauge theory

Quiver gauge theory

(
$$k \in \mathbb{Z}_{>0}$$
)

($k \in \mathbb{Z}_{>0}$)

($k \in \mathbb{Z}_{>0}$)

($k \in \mathbb{Z}_{>0}$)

It was a similar to Seiberg-Witten curves for 4d N=2 SUSY gauge theory. Analogue of $\mathcal{M}_{\mathbb{C}}$ was determined as a family of elliptic curves (Seiberg-Witten curves).

A mathematical definition of (analogue of) $\mathcal{M}_{\mathbb{C}}$ was given by Nekrasov much later in 2002 by Ω -background. And the theory has been developed further after that.

I learned from this lesson:

Writing down a mathematically rigorous definition is a non-trivial, often difficult, but challenging problem.

Today : I propose a mathematically rigorous definition of $\mathcal{M}_{\mathbb{C}}$,

at least as a complex manifold (for good or ugly theories). (work in progress with Braverman+Finkelberg)

& is a critical point of a complex Chern-Simons type functional, hence has a sheaf \mathcal{L}_{CS} of the vanishing cycle.

$$CCM_c = (dual of) H_c^*(R, Y_{cs})$$

$$Cohomology degree$$
(Multiplication will be explained later.)

Reasons why this definition should give the Coulomb branch $\,\mathcal{M}_{\mathbb{C}}\,$

- 1. It reproduces the monopole formula of Cremonesi-Hanany-Zaffaroni, found recently (at least if $\nabla = \nabla \mathcal{D} \mathcal{D}^{(n)}$).
- 2. When V = 0 (which violates good or ugly assumption),

 Bezrukavnikov-Finkelberg(-Mirkovic) identified with
 a certain symplectic quotient, which is moduli space of
 charge k SU(2)-monopoles (for SU(k)) (Bielawski),
 as predicted by Seiberg-Witten (k=2) and Chalmers-Hanany.
- 3. True for abelian
- 4. A natural quantization

 $\triangle_{\mathbb{C}}$ - bundles over \mathbb{P}^{I} are reduced to $\neg_{\mathbb{C}}$ -bundles. (Vector bundles over \mathbb{P}^{I} are direct sum of line bundles.)

This induces a stratification of \mathbb{R} , which is *perfect*.

Therefore the dimension of the cohomology is the sum of dimension of cohomology of strata.

Pt(H*(&,
$$\psi_{cs}$$
)) = $\sum_{\lambda \in coweight \ d \in G} \frac{1}{\frac{1}{2(H_{Stab}^{*}(\lambda)}(pt))} \times t^{2\Delta(\lambda)}$

Weyl group
$$\Delta(\lambda) = -\sum_{\alpha \in \Delta t} |\langle \alpha, \lambda \rangle| + \frac{1}{2} \sum_{b: H-base} |\langle \omega + b, \lambda \rangle|$$
 $d(\lambda) = -\sum_{\alpha \in \Delta t} |\langle \alpha, \lambda \rangle| + \frac{1}{2} \sum_{b: H-base} |\langle \omega + b, \lambda \rangle|$

Product

Taking the Poincare dual, we switch from bundles over \mathbb{P}^1 to affine Grassmannian $\mathbb{G}_{\mathbb{G}_{\mathbb{C}}}$

= bundles over p^1 + trivialization away p^2

 $\text{Gr}_{\text{Gr}} \sim \Omega \text{G}$; based loops group

 \implies Pontryagin product $H_*(\Omega G) \otimes H_*(\Omega G) \longrightarrow H_*(\Omega G)$